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ABSTRACT

A stochastically perturbed parameterization (SPP) approach that spatially and temporally perturbs

parameters and variables in the Mellor–Yamada–Nakanishi–Niino planetary boundary layer scheme

(PBL) and introduces initialization perturbations to soil moisture in the Rapid Update Cycle land surface

model was developed within the High-Resolution Rapid Refresh convection-allowing ensemble. This

work is a follow-up study to a work performed using the Rapid Refresh (RAP)-based ensemble. In the

present study, the SPP approach was used to target the performance of precipitation and low-level var-

iables (e.g., 2-m temperature and dewpoint, and 10-m wind). The stochastic kinetic energy backscatter

scheme and the stochastic perturbation of physics tendencies scheme were combined with the SPP ap-

proach and applied to the PBL to target upper-level variable performance (e.g., improved skill and re-

liability). The three stochastic experiments (SPP applied to PBL only, SPP applied to PBL combined with

SKEB and SPPT, and stochastically perturbed soil moisture initial conditions) were compared to a mixed-

physics ensemble. The results showed a positive impact from initial condition soil moisture perturbations

on precipitation forecasts; however, it resulted in an increase in 2-m dewpoint RMSE. The experiment

with perturbed parameters within the PBL showed an improvement in low-level wind forecasts for some

verification metrics. The experiment that combined the three stochastic approaches together exhibited im-

provedRMSE and spread for upper-level variables. Our study demonstrated that, by using the SPP approach,

forecasts of specific variables can be improved. Also, the results showed that using a single-physics suite

ensemble with stochastic methods is potentially an attractive alternative to using multiphysics for convection

allowing ensembles.
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1. Introduction

In recent years, representation of model uncertainty

within an ensemble system, both global and regional, has

been receiving increasing attention. To address un-

certainty associated with model formulation, a number

of different strategies have been proposed. A frequently

used approach is using amultiphysics ensemble. Use of a

combination of different physics schemes usually leads

to a large diversity among the ensemble members, result-

ing in sufficient spread and improved forecast skill (e.g.,

Hacker et al. 2011b; Berner et al. 2011, 2015). Even though

ensembles designed in this way are often characterized

by good performance, there are both practical and the-

oretical deficiencies associated with them. Practically

speaking, multiple physics parameterizations representing

a single physics process (e.g., convection or boundary layer

processes ormicrophysical processes) have to be developed

and maintained in parallel, which requires extensive re-

sources. Furthermore, for the purpose of statistical post-

processing, securing equally distributed and independent

random variables is a necessity. This requirement cannot

be satisfied when using the multiphysics approach. The

postprocessing of a multiphysics ensemble is further

complicated by the fact that each ensemble member

has a different mean error and climatology, which is

one possible reason that these ensembles have larger

spread (e.g., Eckel and Mass 2005; Berner et al. 2015).

An alternative way to introduce ensemble spread, as

discussed in Jankov et al. (2017), is to perturb physical

parameterizations stochastically (Palmer 2001). Themain

advantage of this approach is that it results in statistically

consistent ensemble distributions (e.g., Bowler et al. 2008;

Berner et al. 2009; Bowler et al. 2009; Sanchez et al. 2016).

The two stochastic schemes that aremost commonly used

and have been implemented in a variety of operational

models are the stochastic kinetic energy backscatter

(SKEB) and stochastic perturbations of physics tendencies

(SPPT) schemes. Both were developed to better represent

subgrid-scale processes. In the case of SKEB, the model

uncertainty associated with subgrid-scale processes is ad-

dressed by randomly perturbing streamfunction and po-

tential temperature tendencies (Berner et al. 2009, 2012,

2015). SPPT (Buizza et al. 1999; Palmer et al. 2009) takes

subgrid-scale processes into account by perturbing the to-

tal physics tendencies such as temperature, humidity, and

wind (Bouttier et al. 2012; Berner et al. 2015). It was shown

that the inclusion of these stochastic schemes within an

ECMWF ensemble improved the probabilistic skill by

increasing reliability and reducing the ensemble mean

error (Palmer et al. 2009 and Leutbecher et al. 2017).

SPPT and SKEBS account for model error in a bulk

sense, where the accumulated process-level model errors

are represented by a single model error term (Berner

et al. 2017). To address model uncertainty in the param-

eters within the respective parameterization schemes, the

stochastically perturbed parameterization (SPP) approach

was developed (Jankov et al. 2017; Ollinaho et al. 2017). It

can be applied by having the parameter and/or variable of

choice unchanged throughout the integration (e.g., Hacker

et al. 2011a) or by varying randomly in time and space.

Previous studies have shown that the SPP approach

usually outperforms unperturbed ensembles but still

does not create sufficient spread (Hacker et al. 2011b;

Reynolds et al. 2011; Berner et al. 2015; Christensen

et al. 2015). Comparison of the SPPT and the SPP

approaches within the ECMWF ensemble forecasts dem-

onstrated more skillful 2-m temperature associated with

SPP and for shorter-range forecasts (Ollinaho et al. 2017),

although this result might be influenced by the fact that

SPPT in the ECMWF implementation is tapered to zero

near the surface. The opposite is true for variables in the

free atmosphere and longer lead times. Bouttier et al. 2012

tested SPPT within a short-range, convection-permitting

ensemble prediction system. It was found that by em-

ploying SPPT, the probabilistic performance was signifi-

cantly improved, particularly in terms of reliability and the

spread–skill ratio. The work also pointed to the weakness

of SPPT in terms of the lack of explicit perturbations for

low levels and at the surface, where large model errors

occur. McCabe et al. 2016 showed that by random per-

turbations of several parameters within microphysics and

PBL schemes in a convection-permitting ensemble, an

improvement in visibility and surface temperature was

obtained. Also, a modest increase of spread for surface

variables was detected.

SPPT implementation in the Weather Research and

Forecasting (WRF) Model (Berner et al. 2015) does

not use the tapering to zero near the surface and results

in a bigger impact on surface variables (Romine et al.

2014). However, this beneficial impact was accompa-

nied by increased bias. WRF adds the increments due

to the microphysics after the state is updated with all

other physical tendencies, possibly leading to a double

counting of themicrophysics perturbations in theRomine

et al. (2014) implementation. Guided by these results, the

microphysics tendencies were no longer explicitly per-

turbed (Berner et al. 2015).

To focus on the uncertainty associated with parameters

as well as the initial state, the present study employs the

SPP approach alone, and in combination with SKEB and

SPPT. While Jankov et al. (2017) performed experiments

with a Rapid Refresh (RAP)-based ensemble with pa-

rameterized convection, this study focuses on evaluating

the impact of stochastic perturbations on high-resolution,

convection-permitting ensemble performance. To this
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extent, perturbations to key parameters in the High-

Resolution Rapid Refresh (HRRR) PBL scheme in

addition to perturbations to the initial soil moisture state

were evaluated.

2. Experiment design

a. Model

The operational HRRR configuration, which has been

running at the National Centers for Environmental Pre-

diction (NCEP), was used as a basis for all the experi-

ments in this study. Simulations were performed over the

operational HRRR continental United States (CONUS)

domain (Fig. 1) with 3-km grid spacing. HRRR’s hori-

zontal integration grid is the staggered Arakawa C grid

(Arakawa and Lamb 1977). The HRRR system uses the

Advanced Research version of WRF (WRF-ARW) dy-

namic core (Skamarock et al. 2008). The physics suite

includes theMellor–Yamada–Nakanishi–Niino (MYNN;

Nakanishi and Niino 2004, 2006) planetary boundary

layer (PBL) parameterization, the Rapid Update Cy-

cle (RUC; Smirnova et al. 2016) land surface model

(LSM) parameterization, Thompson microphysics scheme

(Thompson et al. 2008), and the Rapid Radiative Transfer

Model for general circulation models (RRTMG; Mlawer

et al. 1997).

HRRR lateral boundary and initial conditions are ob-

tained by downscaling RAP (Benjamin et al. 2016) fol-

lowed by an hour-long HRRR preforecast. The HRRR

hourly initialization process using RAP and the pre-

forecast is illustrated in Fig. 2. During this preforecast,

15-min reflectivity data are assimilated and used to

specify latent heating rates (Benjamin et al. 2016). For

observed reflectivity #0 dBZ, the heating rate is set to

zero to suppress spurious model precipitation. For ob-

served reflectivities between 0 and 28 dBZ the model

microphysics heating rate is preserved, and for observed

reflectivities $28 dBZ, the heating rate is positive to

promote convective development. After the preforecast

and radar data assimilation, Gridpoint Statistical In-

terpolation (GSI) hybrid data assimilation as well asGSI

hydrometeor analysis are performed (Benjamin et al.

2016). In the present study, this process was applied

hourly on each ensemble member for each of the ex-

periments. The 24-h-long simulations were performed

twice a day, at 0000 and 1200 UTC. The experimental

dataset consists of 8 members and 10 spring season days

starting on 18 May and ending on 27 May 2016. Even

though the focus of this study is on uncertainties asso-

ciated with model error, by following the operational

process, a form of initial condition perturbations was

also introduced. This resulted in some differences in

statistics between the experiments at the initial times.

The main motivation for employing this initialization

approach was to mimic the operational systems as much

as possible to facilitate evidence-based decision for

transitions to operations. Recently, development of the

HRRR Ensemble (HRRRE) system, which includes an

ensemble-based data assimilation system, started. Based

on this study, stochastically perturbed parameteriza-

tions are part of the HRRRE.

Regarding the data sample, the authors recognize that

the number of simulations and number of ensemble

members are somewhat limited. The decision regarding

experiment length was based on strict computational and

storage resources available. Having these resource limi-

tations in mind, the authors selected an active convective

period across the CONUS during the 2016 Hazardous

Weather Testbed (https://hwt.nssl.noaa.gov/), providing

results that we believe are representative of general en-

semble performance for these types of events. To allevi-

ate small sample size issues, an analysis of simulations

initialized at both 0000 and 1200 UTC is included.

The multiphysics ensemble (mixed_phys), which repre-

sents the control experiment, used different physics pa-

rameterizations for the PBL and LSM schemes (Table 1).

The different PBL schemes included theMellor–Yamada–

Janjić, MYNN, Yonsei University (YSU; Hong et al.

2006), and Pleim–Xu (Pleim 2007) parameterizations. In

terms of the LSMoptions, the RUC (Smirnova et al. 2016)

and Noah (Ek et al. 2003) schemes were employed. The

eight-member multiphysics ensemble contained a combi-

nation of the four PBL and two LSM schemes.

All eight members of the stochastic ensemble exper-

iments used the same physics parameterizations as the

operational HRRR (Table 1). One of the stochastic

experiments consisted of perturbing soil moisture

FIG. 1. Verification domain with the division between western

and eastern regions presented with blue lines and surface, upper-

air, and profiler observations presented with red, blue, and green

dots, respectively.

JANUARY 2019 JANKOV ET AL . 155

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/147/1/153/4378529/m
w

r-d-18-0092_1.pdf by N
O

AA C
entral Library user on 02 July 2020

https://hwt.nssl.noaa.gov/


(sppLSM_IC) values at the initial time only, one per-

turbed multiple parameters within the MYNN PBL

(sppPBL) throughout the forecast, and the final ex-

periment combined the previous PBL perturbations

with SKEB and SPPT (sppPBL_skeb_sppt). Details

on SKEB and SPPT implementations in the WRF-

ARW Model are provided in Berner et al. (2011) and

Berner et al. (2015). Table 2 provides a summary of the

experiments.

The SPP approach used here was adapted from the

previously mentioned research that utilized the RAP-

based ensemble system. A detailed explanation of the

method and creation of the SPP perturbations can be

found in Jankov et al. (2017). In summary, the spatially

and temporally correlated pattern is fully determined by

three namelist parameters: gridpoint standard deviation

(gridpt_stddev_rand_pert, magnitude of the perturba-

tions), length scale (length scale_rand_pert), and de-

correlation time (time scale_rand_pert). Additionally,

since the Gaussian distribution is unbounded, the

random numbers are constrained to stay within a range,

with a threshold expressed in terms of standard de-

viation (stddev_cutoff_rand_pert).

While initial parameter pattern values (e.g., spatial

and temporal decorrelations) were based on suggestions

from HRRR developers, the final settings were chosen

after a series of sensitivity tests. The sensitivity experi-

ments included the following combinations of spatial

and temporal decorrelation lengths, which were chosen

based on typical spatial and temporal advective scales:

150 km and 6h, 300km and 12 h, and 600km and 24 h.

Experiments with a spatial and temporal decorrelation

length of 150km and 6h, respectively, resulted in the

greatest skill. Therefore, these values were used for each

of the experiments employing the SPP approach, as well

as the experiment that included soil moisture pertur-

bations at the initial time.

As described in detail in Jankov et al. (2017), the

stochastic perturbations at each grid point draw from a

univariate Gaussian distribution centered on the value

of the deterministic parameter. The spatial correlations

guarantee that the perturbations to nearby grid points

have, on average, the same sign.

The spatial correlations guarantee that the perturba-

tions to nearby grid points have on average the same

sign. Table 3 provides a summary of the targeted pa-

rameters and variables in the MYNN PBL scheme and

corresponding perturbation amplitudes.Within the PBL

parameterization scheme, there are two dynamically

evolving parameters (Czil, Prlimit) and two variable

FIG. 2. HRRR initialization with RAP.

TABLE 1. HRRR stochastic and mixed-physics members.

Physics suite Microphysics Radiation (SW/LW) Surface layer Land surface model PBL

HRRR (stochastic members) Thompson aerosol aware RRTMG MYNN RUC MYNN

HRRR (mixed physics) mem0 Thompson aerosol aware RRTMG Revised MM5 Noah YSU

mem1 Thompson aerosol aware RRTMG MYJ Noah MYJ

mem2 Thompson aerosol aware RRTMG MYNN Noah MYNN

mem3 Thompson aerosol aware RRTMG Revised MM Noah ACM2

mem4 Thompson aerosol aware RRTMG MYNN RUC YSU

mem5 Thompson aerosol aware RRTMG MYNN RUC MYJ

mem6 Thompson aerosol aware RRTMG MYNN RUC MYNN

mem7 Thompson aerosol aware RRTMG MYNN RUC ACM2
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perturbations (el and cldfra_bl). Variations in Czil can

greatly impact the size of the thermal roughness lengths,

which determines the magnitude of the surface ex-

change coefficients for heat. The Prandtl number, Pr, is

defined as Km/Kh, where Km and Kh are the eddy vis-

cosity and eddy diffusivity, respectively. The Prandtl

number limit, Prlimit, is allowed to vary between 1 and

5, which limits the amount of momentum mixing in the

stable boundary layer relative to the mixing of heat.

Since the value of Pr is considered to be more well

known in unstable conditions, when Pr, 1, this limit will

not impact the turbulent mixing in unstable conditions.

Mixing lengths are diagnosed at every model time step

and are a function of the ambient stability, TKE, and

surface stability parameter (z/L), where z is the height

above the ground and L is the Obukhov length. The

diagnosed mixing lengths are important for regulating

the TKE and, therefore, the strength of the turbulent

mixing in all conditions. And finally, subgrid cloud

fractions, which are also diagnosed at every time step,

are important for the interaction with both shortwave

and longwave radiation and can greatly influence the

surface energy balance.

In the PBL scheme, the turbulent mixing length and

subgrid cloud fraction were directly perturbed, and

thermal and moisture roughness lengths were indirectly

perturbed through changing the Zilitinkevich constant,

Czil. With PBL development, the smaller shallow cu-

mulus become larger and deeper, but the total cloud

fraction is not necessarily changed. On the other hand,

in deep, dry boundary layers when the mixing lengths

are the largest, cloud cover is small. Therefore, in fully

developed PBLs, there is a negative correlation between

subgrid-scale clouds and mixing length. Thus, negative

correlation, which reduces subgrid-scale clouds when

mixing lengths become larger, was implemented. The

result of the correlation is more solar radiation reaching

the surface, leading toward higher surface temperatures

and larger surface heat fluxes that then result in an in-

crease of mixing lengths, representing a positive feed-

back process. Increased turbulent mixing can lead to

increased entrainment at the top of the PBL, which then

dries the PBL and consequently further reduces the

subgrid-scale clouds (Stull 2012). Czil was perturbed up

to half (twice) its original value. Since Czil is in the

negative exponent, decreasing (increasing) Czil on the

order of half (double) its value results in a perturbation

of thermal roughness length of 5%–10%.

The thermal roughness length zt is defined as follows:

z
t
5 z

0
e(2kCzil

ffiffiffiffiffi
Re

p
) , (1)

where z0 is aerodynamic roughness length, k is the Von

Kármán constant, and Re is the Reynolds number.

To evaluate the mechanisms by which the stochastic

perturbations in the PBL scheme led to expected

changes in the model state, changes in the SPP pattern

and related model variables throughout the simulation

period were examined at a select grid point for three

ensemble members drawn from the sppPBL experiment

(Fig. 3). The first member (red) was unperturbed, the

second member (blue) was characterized by positive

perturbation throughout much of the simulation time,

while the third member (green) was characterized with

negative perturbations for most of the simulation time.

It can be seen that positive perturbations led to in-

creased values of PBL height, heat flux, shortwave-

down radiation, and turbulent kinetic energy (TKE),

as expected. The opposite was the case for the member

characterized by negative SPP pattern. The SPP im-

plementation within the PBL scheme created physically

consistent changes in the model state.

In the RAP operational system, which is used for the

HRRR initialization, soil state is defined by hourly cy-

cling and defining a soil–air forecast–error relationship.

Analyses of near-surface temperature and moisture are

used to make small adjustments to soil temperature and

soil moisture (Benjamin et al. 2016; Smirnova et al. 2016).

TABLE 2. Summary of experiments.

Expt name Description

mixed_phys Control mixed physics ensemble that

combines different PBL and LSM

schemes

sppLSM_IC Soil moisture state perturbed at the

initial time

sppPBL Set of parameters and variables

within PBL scheme stochastically

perturbed throughout the

simulation period

sppPBL_skeb_sppt SKEB and SPPT combined with the

PBL perturbations and applied

throughout the simulation period

TABLE 3. Summary of perturbed parameters and variables in PBL

MYNN and RUC LSM.

Name Magnitude

Perturbed parameter in MYNN PBL scheme

Turbulent mixing length el 30%

Subgrid cloud fraction cldfra_bl 20%

Thermal and moisture

roughness length

CZIL 30%

Prandtl number’s limit

set to 2.5

Prlimit 1

Perturbed parameter in RUC LSM scheme

Soil moisture SMOIS 20%
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This procedure helps retain the soil–air temperature

difference between the forecast background and the

analyzed state. The parameters used in this procedure

were experimentally estimated for both summer and

winter seasons. Given this, and the fact that there are not

sufficient direct observations, soil moisture is not as-

similated in RAP. However, given its direct impact on

subsequent boundary layer humidity and convective

initiation, soil moisture has been found to strongly in-

fluence forecast accuracy. Previous studies have shown

the importance of variability in soil moisture or LSM

parameterization perturbations for ensemble spread

(Sutton et al. 2006; Duda et al. 2017) as well as ensemble

precipitation forecasting (Aligo et al. 2007). Therefore,

initial conditions of soil moisture were perturbed within

the RUC LSM parameterization scheme for one of the

ensemble experiments, using the same spatial and tem-

poral decorrelation lengths as the PBL simulations.

For wider use of the SPP, specifics on how to apply

it within WRF can be found in the WRF User’s guide.

FIG. 3. Realizations of time series of (a) PBL height, (b) heat flux, (c) shortwave radiation,

(d) TKE, and (e) perturbation pattern at a select grid point in perturbed and unperturbed sim-

ulations. The unperturbed simulation is presented in red and perturbed simulations characterized

by persistent positive and negative perturbations are presented in blue and green, respectively.
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An example of namelist settings for a specific experiment

can be found in Jankov et al. (2017). Finally, all SPP

changes introduced to the code for the purpose of this

work have been committed to the WRF repository and

are available for public use through recent community

releases.

In the present study, for assessing the impact of SPP,

the focus was on precipitation and surface variables (2-m

temperature, 2-m dewpoint temperature, and 10-m wind).

For overall assessment, and specifically for evaluating the

impact of SKEB and SPPT, additional, somewhat limited,

upper-air analysis was performed. The analysis included

spread/error evaluation for 500-hPa geopotential height,

850-hPa temperature, and 250-hPa wind.

b. Observation data

For evaluation of accumulated precipitation, the

Multi-Radar Multi-Sensor (MRMS) local gauge bias-

corrected radar quantitative precipitation estimation

(QPE) analyses were used. This dataset integrates radar

base data with atmospheric environmental data, satellite

data, and lightning and rain gauge observations to

generate a suite of severe weather and QPE products at

very high spatial (1 km) resolution (Zhang et al. 2016).

Prior to performing the evaluation, the MRMS gridded

dataset was regridded to the 3-km integration domain

using budget interpolation to allow for direct grid-to-

grid comparisons. Precipitation was verified over 3-h

and daily accumulations.

For conventional surface and upper-air point observa-

tions, RAP observation files in Binary Universal Form for

Representation of Meteorological Data (BUFR) format

were used. Verification of standard meteorological fields

(temperature, dewpoint, and wind) was performed hourly

for surface variables and for times valid at 0000 and

1200 UTC for upper-air variables. When compared to

model output, bilinear interpolation was performed.

c. Evaluation metrics

Precipitation performance was assessed using a number

of verification metrics for deterministic and probabilistic

forecast evaluation, including rank histograms, frequency

bias, fractions skill score (FSS), and reliability.

The rank histogram is a diagnostic tool that facilitates

assessing the spread of ensemble forecasts, based on the

assumption that the probability of occurrence of an ob-

servation in a set of forecast bins should be equally likely

(Hamill 2001). These bins are determined by ranking en-

semble member forecasts from lowest to highest value; thus,

for an ensemble with n members, the corresponding rank

histogram will have n 1 1 bins. The rank histogram is pro-

duced by plotting the frequency of occurrence of observa-

tions in each bin. Flat rank histograms indicate an ensemble

with ideal spread, while a u-shaped histogram indicates un-

derdispersion. An asymmetric rank histogram indicates that

an ensemble has bias. In terms of precipitation, higher values

in the first bin on the left-hand side indicate bias in the en-

semble toward heavier precipitation amounts and vice versa

for the last bin on the right-hand side.

Frequency bias was calculated as the ratio of fore-

cast to observed grid points exceeding a specified pre-

cipitation threshold. A perfect score for frequency bias

is 1, where values higher (lower) indicate that the model

overpredicted (underpredicted) the exceedance of a

given threshold. In the present study, frequency bias was

analyzed for the two initializations and two precipitation

thresholds (0.254 and 12.7mm) as an aggregate over all

members of each experiment (Fig. 5). The low precipi-

tation threshold was selected to evaluate the experi-

ments performance for very light precipitation, while

the higher precipitation threshold was selected as a good

representative threshold for the period over which the

simulations were performed. Confidence intervals at the

95% level for each experiment were applied.

FSS (Roberts and Lean 2008; Schwartz et al. 2010)

was evaluated for the two precipitation thresholds (0.254

and 12.7mm) and two neighborhood sizes (9 and 45km).

Calculation of FSS includes the following steps: (i)

convert all forecast (F) and observed (O) fields into bi-

nary fields for each threshold of interest, (ii) generate

fractions within a square of length n that have exceeded

the threshold at each grid point across the full verifica-

tion domain (Nx,Ny), and (iii) compute themean squared

error (MSE) relative to a low-skill reference forecast

(MSEref), which equates to the largest possible MSE

that would be found if no overlap between forecast and

observed events occurred. FSS for a neighborhood of

length n is given by

FSS5 12
MSE

(n)

MSE
(n)ref

, (2)

where

MSE
(n)

5
1

N
x
N

y

�
Nx

i51
�
Ny

j51

[O
(n)ij

2F
(n)ij

]2 (3)

and

MSE
(n)ref

5
1

N
x
N

y

2
4�
Nx

i51
�
Ny

j51

O2
(n)ij 1 �

Nx

i51
�
Ny

j51

F2
(n)ij

3
5 . (4)

The FSS ranges from 0 to 1. A score of 1 is attained

for a perfect forecast and a score of 0 indicates no skill.

As the neighborhood expands and the number of grid
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boxes in the neighborhood increases, the FSS improves

as the observed and model probability fields are gener-

ally smoothed and their overlap tends to increase.

A reliability diagram is a graphical method for

assessing reliability, resolution, and sharpness of a

probabilistic forecast. It includes observed frequency

plotted against forecast probability of an event. Re-

liability is measured by proximity to the diagonal and

resolution is defined as a variation from the horizontal

line that represents sample base rate (Fig. 7). To obtain

useful results reliability diagrams require a large dataset.

For evaluation of surface and upper-air variables,

an emphasis was on root-mean-square error (RMSE),

spread, bias, and reliability. Aggregate RMSE values of

the ensemble mean and corresponding spread values

were computed for all experiments. The spread was

computed as the average ensemble standard deviation

over the domain. The ensemble mean is the simple

arithmetic average of the members. RMSE, spread, and

the ratio of the two concisely summarize ensemble

performance. It is desirable to have comparable spread

and error values (i.e., having spread encompass the er-

ror), producing a ratio between the two near 1. In ad-

dition, bias, or more precisely mean error (ME), was

computed as a function of lead times for the three sur-

face variables.

3. Results

a. Precipitation verification

All simulations were performed over the CONUS do-

main (outer black box in Fig. 1). Verification of ‘‘raw’’

model output (there was no postprocessing applied to the

model output such as bias removal and/or calibration)

was performed using Model Evaluation Tools (MET;

Bullock et al. 2017) software over the CONUS, CONUS-

East, and CONUS-West 3-km verification domains

(Fig. 1) for runs initialized at both 0000 and 1200 UTC.

Trends in results for CONUS-East andCONUS-West for

the two initializations were very similar. Given this, re-

sults discussed here are restricted to the CONUS-East

domain for both 0000 and 1200 UTC initializations.

Confidence intervals (CIs) at the 95% level were applied

to the computed statistics in order to estimate the un-

certainty associated with sampling variability; however,

observational uncertainty was not considered in this

study. The CIs were computed using the bootstrapping

technique and resampling with replacement was con-

ducted 1500 times.

Figure 4 shows rank histograms of 3-hourly pre-

cipitation accumulations aggregated between the 0- and

24-h lead times for each experiment and 0000 UTC

initializations. The rank histogram for all experiments

generally indicates lower relative frequency values for the

middle bins and higher values for the outermost bins, thus,

indicating underdispersion. Specific features differ some-

what among the experiments, however. The mixed_phys

experiment indicated a bias toward heavier precipitation.

Similarly, the sppPBL and sppPBL_skeb_sppt experi-

ments exhibited bias, but were also characterized by the

presence of underdispersion. The sppLSM_IC ensemble

was characterized by similar values of relative frequen-

cies in the outermost bins indicating a tendency to be

underdispersed, rather than biased. Nearly identical

rank histogram plots were observed for runs initial-

ized at 1200 UTC (not shown).

Frequency bias for the runs initialized at 0000 UTC,

3-h accumulated precipitation greater than 0.254mm

(Fig. 5a) showed statistically significant differences be-

tween several experiments (i.e., confidence intervals did

not overlap), although not for all lead times. In general,

the mixed_phys and sppLSM_IC experiments were

frequently significantly different from the sppPBL and

sppPBL_skeb_sppt experiments. The sppLSM_IC en-

semble was the only experiment characterized with

frequency bias values lower than one for most of the

lead times while the other three experiments typi-

cally had frequency bias values larger than 1. While

the mixed_phys frequency bias increased with lead time,

the other three experiments generally decreased with

lead time after an initial increase at the 6-h lead time.

The sppPBL_skeb_sppt and sppPBL ensembles had sig-

nificantly higher-frequency bias values for this threshold

and the first 15h of the forecast compared to the other

two experiments, with an improved frequency bias later

in the period. Similar behavior was observed for the

1200 UTC initializations (not shown).

FIG. 4. Rank histograms for all experiments for 0000 UTC ini-

tializations over the eastern CONUS domain, 3-hourly accumu-

lated precipitation aggregated between the 0- and 24-h lead times.
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FIG. 5. Frequency bias aggregated over all members for each experiment as a function of lead

time for 0000 UTC initializations over the eastern CONUS domain for a precipitation accu-

mulation threshold of (a).0.254 and (b).12.7mm. Note the y-axis range is different between

(a) and (b).
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The same type of analysis, except for 12.7-mm pre-

cipitation threshold, showed values close to 1 (confi-

dence intervals frequently encompassed 1) for most

of the lead times for the mixed_phys and sppLSM_IC

experiments (Fig. 5b) for the 0000 UTC initializations.

The sppPBL_skeb_sppt and sppPBL again had similar

behavior among themselves, and often exhibited a sig-

nificant low bias for this threshold. Similar trends were

observed for the 1200 UTC initializations (not shown).

Figure 6 shows FSS for the 0000 UTC initializations,

the two precipitation thresholds (0.254 and 12.7mm),

the two neighborhoods (9 and 45km), and each exper-

iment as a function of lead time. Generally, for the two

neighborhoods, and all experiments, FSS decreased

with increasing lead times. For the light precipitation

threshold (Fig. 6a), a clear separation in FSS values for

the two neighborhoods was indicated and the larger

neighborhood was characterized by higher FSS values.

At the shorter lead times, themixed_phys experiment had

somewhat lower skill compared to sppPBL_skeb_sppt

and sppPBL, and significantly lower skill compared to

sppLSM_IC. Interestingly, for the heavier precipitation

threshold (Fig. 6b), the differences in FSS for different

neighborhood sizes were not as pronounced as it was

the case for the low precipitation threshold. For the

occasional lead times where a statistically significant

difference was noted, sppLSM_IC experiment was

favored as the best. For both thresholds, similar

trends were observed for the 1200 UTC initializations

(not shown).

Reliability diagrams and corresponding event histo-

grams were created for 24-h accumulations, for the 0.254-

and 12.7-mm precipitation thresholds, for 0000 UTC

initializations, and for each experiment (Fig. 7).

The observed frequency (i.e., the sample base rate)

for the lower precipitation threshold and 0000 UTC

initialization (Fig. 7a) is about 35% of the grid locations

over the 10-day period, making it a somewhat common

event. Reliability diagrams measure the calibration of a

probability forecast. All of the ensembles at this lower

threshold showed similar trend, with a generally higher

observed proportion of events when the ensemble

probability values were higher. Thus, all of the ensem-

bles had some ability to discriminate these precipitation

events from nonevents. Similarly, event histograms

show that all of the experiments were generally sharp

compared to the base rate. In other words, all of the

experiments had a tendency to forecast extreme values

(probabilities of 0% and close to 100%, as opposed to

values around themean). However, all of the ensembles,

except the sppLSM_IC, overestimated the probability of

the precipitation events (i.e., they fall below the solid

gray one-to-one line). The sppLSM_IC was generally

characterized by higher reliability (i.e., closer to the one-

to-one line) compared to the other experiments for

all forecast frequencies. Consequently, sppLSM_IC re-

sulted in a better resolution (variance from the base rate

line) compared to the other experiments. Very similar

results were observed for the 1200 UTC initializations

(not shown).

Reliability diagrams for 12.7-mm threshold and

0000 UTC initializations (Fig. 7b) showed overconfidence

for all experiments and for all forecast frequencies.

However, all of the experiments were characterized with

reliability between the no skill and perfect reliability

line, with exception for the lowest forecast frequency.

The three stochastic experiments performed similarly to

mixed_phys experiment. In terms of sharpness, all ex-

periments failed to predict high-probability events,

which was accompanied with lower reliability for those

frequencies. For the same precipitation threshold but

1200 UTC initializations, the results were comparable

to the 0000 UTC initialization results (not shown).

To illustrate differences in probabilities obtained for

each of the ensembles, a case was selected and CONUS-

wide probabilities of 24-h precipitation accumulations

exceeding 25.4mm were evaluated for each experiment

initialized at 0000 UTC 24 May 2016 (Figs. 8a–d).

Total precipitation accumulations for this period using

MRMS measurements are also shown in Fig. 8e. Sig-

nificant areas of precipitation were generated by a

convective line on the northern border of Kansas, which

formed around 0800 UTC; however, the system dissipated

during south-eastward propagation through Kansas. At

around 1400 UTC, a well-defined convective line re-

initiated over central and southern Missouri and con-

tinued to propagate south, southeast, terminating in

northern Arkansas, and southeast Missouri at the end of

the period. The mixed_phys (Fig. 8a) and sppLSM_IC

(Fig. 8d) experiments appear to capture the potential for

this observed evolution, while only one member of the

sppPBL_skeb_sppt (Fig. 8b) and no members of sppPBL

(Fig. 8c) experiments produced precipitation .25.4mm

anywhere in Missouri.

When compared to the stochastic experiments, the

mixed_phys (Fig. 8a) experiment generally produced

probabilities covering a larger areal extent. The sppPBL

(Fig. 8c) and sppPBL_skeb_sppt (Fig. 8b) experiments

produced more focused probabilities, generally limited

to northern Kansas, and were shifted more northwest-

ward than probabilities from the mixed_phys experi-

ment. The northwestward shift in the two experiments

correctly highlighted the precipitation area in eastern

Nebraska. In addition, probabilities over northern

Kansas were somewhat higher for the two experiments

as compared to mixed_phys because of smaller spread.
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Low probabilities extended farther toward the southeast

in Kansas and into Missouri for the sppPBL_skeb_sppt

experiment when compared to sppPBL, indicating that

the combination of SKEB and SPPT resulted in a more

diverse solution compared to sppPBL. The sppLSM_IC

solution was more similar to mixed_phys with areas of

high probabilities over the Missouri–Arkansas border.

In the case of sppLSM_IC, high-probability areas were

more concentrated and characterized by higher values

compared to mixed_phys as a consequence of smaller

spread. On the other hand, reliability analysis (for all

cases aggregated together) showed higher reliability in

FIG. 6. Fractions skill score (FSS) for 9-km (solid) and 45-km (dot–dashed) neighborhood sizes

for (a) .0.254- and (b) .12.7-mm precipitation thresholds.
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the case of sppLSM_IC.More precisely, sppLSM_IC was

characterized with smaller spread but higher reliability

indicating a sharper and more useful forecast. It should

be noted, the Kansas event was outside the CONUS-E

domain and hence it was not included in the general

precipitation analysis discussed elsewhere in this paper.

To summarize the 3-h accumulated precipitation

verification results, the rank histograms indicated some

level of underdispersion and bias for all ensemble experi-

ments. Frequency bias results varied with threshold, ini-

tializations, and forecast lead time, where the mixed_phys

experiment was characterized by positive frequency bias

FIG. 7. Reliability diagram for 0000 UTC initializations over the eastern part of the domain

and for (a) .0.254- and (b) .12.77-mm precipitation thresholds. The horizontal dotted line

represents the sample base rate, the diagonal dotted line represents no skill, while the solid gray

diagonal line represents perfect reliability.
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for both thresholds and both initializations at most of

the lead times. The sppLSM_IC experiment had lower-

frequency bias for light precipitation and close to 1 for

heavier precipitation threshold. In general, sppLSM_IC

had better frequency bias when compared to other ex-

periments. The FSS analysis for both light and heavier

precipitation thresholds for the two neighborhood sizes

generally showed comparable results for all experi-

ments, with only a few statistically significant differences

noted favoring the sppLSM_IC experiment. For the two

evaluated precipitation thresholds (0.254 and 12.7mm),

the sppLSM_IC experiment most often had the higher

FIG. 8. Probability of 24-h precipitation accumulation .25.4-mm threshold for the (a) mixed_phys, (b) sppPBL_skeb_sppt, (c) sppPBL,

and (d) sppLSM_IC experiments, and (e) total estimated 24-h precipitation accumulation ending at 0000 UTC 25 May 2016.
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reliability compared to other experiments. Finally, an

evaluation of probabilities of 24-h precipitation accu-

mulation exceeding 25.4-mm threshold for a select event

and all experiments showed similarities in performance

between the mixed_phys and sppLSM_IC experiments

compared to the observed precipitation accumulations.

The sppLSM_IC ensemble was characterized with more

concentrated areas of higher probabilities, which in com-

bination with generally higher reliability indicates sharper

forecast as compared to themixed_phys ensemble. Also,

sppLSM_IC was characterized with much broader area

of low to moderate probabilities compared to other

stochastic experiments. In general, the soil moisture per-

turbations at the initial time had an overall positive

impact on precipitation forecasts.

b. Surface verification

In addition to precipitation, forecasts of surface

variables including 2-m temperature, 2-m dewpoint

temperature, and 10-m wind speed, were analyzed.

Once again, discussed results will be concentrated on the

CONUS-East domain and the two initialization times.

At present, MET does not include observational error;

therefore, it is not considered here. Taking observational

uncertainty into account for ensemble evaluation has been

shown to affect verification of short-term simulations

(Bouttier et al. 2012). Inclusion of observational error

would likely reduce the level of underdispersion (Candille

and Talagrand 2008).

For 2-m temperature and 0000 UTC initialization

(Fig. 9a), all experiments had comparable RMSE values

early in the forecast (evening/overnight hours). While

the sppLSM_IC aggregate RMSE values were lower

than the other experiments overnight, the errors in-

creased most rapidly for the sppLSM_IC experiment

during the day, which led to significantly higher error

when compared to sppPBL and sppPBL_skeb_sppt,

but not mixed_phys. A similar trend was observed in

the sppLSM_IC experiment’s bias (difference between

forecasts and observations) results (Fig. 9b). Mixed_phys

was characterized with an increasing bias throughout the

simulation period. On the other hand, sppPBL and

sppPBL_skeb_sppt experiments had a positive bias

during the night that reversed to a small cool bias

during the day.

Spread values for all experiments for the 0000 UTC

initializations were lower than RMSE values indicating

underdispersion. However, spread values varied widely

between the experiments. Themixed_phys and sppLSM_IC

experiments had comparable spread values for most

forecast hours (exception is forecast hour 12). Overnight,

sppPBL_skeb_sppt and sppPBL had significantly lower

spread compared to the other two experiments. During

the day, the spread for sppPBL_skeb_sppt increased and

approached the other two experiments, while sppPBL

was characterized with significantly lower spread for the

duration of the forecast period. For all experiments, the

same diurnal pattern inRMSE, spread (Fig. 9c), and bias

(Fig. 9d) was detected in the 1200 UTC initialization.

RMSE, spread, and bias analysis as a function of lead

time for 2-m dewpoint temperature is presented in

Fig. 10. For the 0000 UTC initializations, during the

overnight hours (Fig. 10a), mixed_physics had signifi-

cantly higher RMSE values when compared to the other

experiments. During the day, as was the case for 2-m

temperature, sppLSM_IC was characterized by a rapid

increase and significantly higher error compared to other

experiments (Fig. 10a). The corresponding bias analysis

(Fig. 10b) showed that the significant increase for the

sppLSM_IC daytime error was associated with a dry bias.

All of the other experimentswere characterized by amoist

bias during the day. In terms of spread, the mixed_phys

ensemble had comparable spread to sppLSM_IC over-

night, while during the day the sppLSM_IC spread was

significantly larger than any other experiment. In the case

of sppPBL_skeb_sppt, spread increased with lead time but

was still significantly lower compared to sppLSM_IC

and mixed_phys. The sppPBL experiment was once

again characterized by significantly lower spread for the

duration of the forecast. Overall, the high RMSE values

for sppLSM_IC were accompanied by significantly

higher spread compared to other experiments leading

to a spread/skill ratio close to 1 by the end of the

forecast period. The same analysis for the 1200 UTC

initialization showed very similar diurnal trends in

RMSE and spread (Fig. 10c). The bias analysis (Fig. 10d)

showed statistically significant dry bias for sppLSM_IC

throughout the duration of simulations and generally no

bias for mixed_phys. The other two stochastic experi-

ments were characterized with statistically significantly

positive bias, for most of the lead times. Again, the

sppLSM_IC experiment was the only ensemble to have a

spread/skill ratio around 1.

The 10-m wind RMSE, spread, and bias are presented

in Fig. 11. For the 0000 UTC initialization, all experi-

ments had similar RMSE values for all forecast lead

times (Fig. 11a). Also, all experiments had the same

trend in bias (Fig. 11b) with a high bias overnight.

During the daytime, mixed_phys and sppLSM_IC

exhibit a small positive bias compared to the other two

experiments, which have a small negative bias. While all

experiments also had generally low spread, the spread

values differed notably among the experiments (Fig. 11a).

The mixed_physics and sppPBL_skeb_sppt had com-

parable spread that was significantly larger compared to

the other two experiments for most lead times, with
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sppLSM_IC having increasing spread toward the end of

the period. The sppPBL experiment again has the lowest

spread. Figures 11c and 11d show the same trend in

RMSE and spread as well as bias diurnal change for the

1200 UTC initialization.

Further, reliability diagrams for surface variables ag-

gregated over the 24-h forecast period were evaluated

for select thresholds and the two initialization times.

Because of similarity of the results from the two initiali-

zations, only 0000 UTC initialization results are discussed

(Fig. 12). Figure 12a shows reliability of 2-m temperature

at a threshold greater than 293K. The sample base rate for

this threshold was 50%. It can be seen that the most reli-

able ensemble varied with forecast frequency, though the

stochastic experiments have better reliability for most

frequencies compared to the mixed_physics ensemble,

which was generally overconfident (Fig. 12a). Event

histograms, for all experiments and both initializations,

demonstrated the ability of the experiments to predict

both low and high forecasted frequencies.

Reliability for 2-m dewpoint temperature was evalu-

ated for the greater than 283-K threshold (Fig. 12c). The

sample rate for this threshold was close to 70%, which

made it a relatively common event. Generally, all ex-

periments were underconfident. The sppLSM_IC and

mixed_physics ensembles progressively became more

underconfident for higher forecast frequencies. The

sppPBL_skeb_sppt and sppPBL ensembles generally

remained more reliable compared to the other two en-

sembles. The highest forecast frequency was character-

ized by underconfidence, no skill, and higher values in

the event histogram for all ensembles.

The 10-m wind speed ensemble reliability was evalu-

ated for wind speeds greater than 4ms21 and greater

FIG. 9. The 2-m temperature (a) RMSE (dashed lines) and spread (solid lines) for 0000 UTC initialization, (b) bias for 0000 UTC

initialization, (c) RMSE and spread for 1200 UTC initialization, and (d) bias for 1200 UTC initialization. The vertical bars indicate 95%

confidence intervals. For 0000 UTC initialization, 12-h lead time marks approximate sunrise time, while for 1200 UTC initialization, that

is an approximate sunset time.
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than 6 m s21 (Figs. 12c and 12d). For the 4 m s21

threshold (Fig. 12c) the sample rate was somewhat

lower than 30%. Generally, all ensembles were over-

confident, with sppPBL_skeb_sppt having better re-

liability. Overconfidence for higher frequencies and for

all ensembles was associated with lower event histo-

gram values. The same analysis except for the 6m s21

threshold is presented in Fig. 12d. For all frequencies

sppPBL and sppPBL_skeb_sppt demonstrated better

reliability compared to the other two experiments. How-

ever, all ensembles were characterized with a limited

number of highest probabilities forecasts, likely related

to the fact that this was a rare event (base rate ,10%).

Given the fact that both sppPBL and sppPBL_skeb_sppt

were characterized by small spread for 2-m temperature

(Fig. 9) and 2-m dewpoint temperature (Fig. 10), this

result implies that the PBL perturbations even with the

addition of SKEB and SPPT, did not have much impact

on spread for either of those surface variables. This

agrees with other studies that suggest that solely per-

turbing atmospheric physics scheme parameters is cur-

rently not enough to achieve sufficient spread at surface

(Jankov et al. 2017; Hacker et al. 2011b; Reynolds et al.

2011;Berner et al. 2015).Reliability diagramanalysis for 2-m

temperature and the 293-K thresholds showed an advan-

tage for the stochastic experiments over mixed_physics

(Fig. 12a). The 2-m dewpoint reliability analysis for the

283-K thresholds revealed similar behavior between

sppLSM_IC and mixed_physics and somewhat inferior

as compared to the other two ensembles (Fig. 12b).

Reliability analysis for 10-m wind exceeding 4 and

6ms21 showed higher reliability for sppPBL_skeb_sppt

and sppPBL compared to the other two experiments.

Overall, the analysis revealed that even though sppPBL

and sppPBL_skeb_sppt were generally characterized

by lower spread, they resulted in more reliable forecasts

for select thresholds, especially in regards to the 10-m

wind forecasts.

FIG. 10. As in Fig. 9, but for 2-m dewpoint temperature.
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c. Upper-air verification

A similar analysis to that performed for surface

variables was also performed for select upper-air

variables and levels, including 850-hPa tempera-

ture, 500-hPa geopotential height, and 250-hPa wind

(Fig. 13). For 850-hPa temperature and 0000 UTC

initializations, all stochastic experiments had signifi-

cantly lower RMSE at initialization time compared to

the mixed_phys (Fig. 13a). The RMSE values generally

increased with forecast lead time, with sppLSM_IC hav-

ing the largest RMSE values by the end of the period

(Fig. 13a). When looking at spread, the sppLSM_IC ex-

periment had significantly larger values at initialization

time, implying the initial condition perturbations, in com-

bination with cycling of soil moisture and temperature,

had a significant impact. The sppPBL_skeb_sppt experi-

ment had the largest spread at the 1200 UTC valid time

and the sppPBLwas generally significantly lower than the

other experiments throughout the period.

For 0000 UTC initializations,there are no statistically

significant differences in RMSE values for 500-hPa

geopotential height; however, spread varies signifi-

cantly between each of the experiments (Fig. 13b). The

sppPBL_skeb_sppt experiment had significantly larger

spread, followed by mixed_phys, sppLSM_IC, and fi-

nally sppPBL. This led to the sppPBL_skeb_sppt ex-

periment having the best spread/skill ratio.

The mixed_phys experiment had significantly larger

error at the initial time for 250-hPa wind for 0000 UTC

initializations, but differences in RMSE between all of

the experiments were not significant at 12- and 24 h lead

times (Fig. 13c). Similar spread for sppPBL_skeb_sppt

and mixed_physics was noted, which was significantly

larger when compared to the other two experiments.

Similar trends in spread and RMSE for all variables

were observed for 1200 UTC initializations (not shown).

In general, the upper-air analysis indicates that the

use of SKEB and SPPT improves model performance

FIG. 11. As in Fig. 9, but for 10-m wind speed.
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(e.g., spread) for upper-air variables. This was espe-

cially the case for 500-hPa geopotential height. The

same finding was also valid for the RAP-based ensemble

(Jankov et al. 2017).

4. Summary and conclusions

The next generation of unified operational systemwill

require a well-performing, rapid refresh, convection allow-

ing, single dynamic core and single physics suite ensemble.

Therefore, it is critical to explore stochastic approaches as a

potential alternative to the currentmultidycore,multiphysics

suites, high-resolution ensemble. A stochastically perturbed

parameterization (SPP) approach was developed to repre-

sent sources of uncertainty within the HRRR physics suite.

Encouraged by the performance at 15km, as part of the

RAP ensemble (Jankov et al. 2017), we present here results

at a convection-allowing resolution of 3 km.

Ensemble performance using only SPP and in combi-

nation with other stochastic methods (SKEB and SPPT)

was compared against a multiphysics ensemble. This is a

high bar, since the multiphysics ensemble is a more ef-

fective method of representing model error than cur-

rently applied stochastic methods with a single model

configuration (e.g., Berner et al. 2015).

The SPP approach introduces temporally and spatially

varying perturbations to key parameters and variables

in the MYNN PBL physics parameterization (turbulent

mixing length, subgrid cloud fraction, thermal and mois-

ture roughness lengths, and Prandtl’s number). The SPP

spatial pattern was also applied to the soil moisture field

of the RUC LSM scheme at the initialization time. The

detailed characteristics of these perturbations (pertur-

bation amplitude and spatial and temporal decorrela-

tion lengths) were determined through collaboration

with physics parameterization experts. For the HRRR

FIG. 12. Reliability diagrams for 0000 UTC initialization over the eastern part of the domain for (a) 2-m temperature for a threshold of

.293K, (b) 2-m dewpoint temperature for a threshold of .283K, (c) 10-m wind for a threshold of .4m s21, and (d) 10-m wind for a

threshold of.6m s21. The horizontal dotted line represents no resolution, the diagonal dotted line represents no skill, and the solid gray

diagonal line represents perfect reliability.
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domain, a decorrelation time and length of 6 h and

150 km, respectively, were found to be appropriate for

convective scales.

An 8-member HRRR ensemble consisting of 24-h

forecasts was evaluated using a variety of metrics over

the 18–27 May 2016 period to assess the impact of

stochastic approaches primarily on precipitation and

surface variables, but also on upper levels. All model

runs used RAP forecasts as initial conditions for a 1-h

preforecast that included the latest observations.

Significant findings are summarized below:

d Representing uncertainty in the soil moisture initial-

ization resulted in a generally positive impact on pre-

cipitation skill and reliability, which is consistent with the

recent findings of Bouttier et al. (2016) and Schraff et al.

(2016). However, these perturbations were accom-

panied by an increase in the RMSE of 2-m dewpoint

temperature due to a dry bias. This approach should

be investigated in more detail in order to effectively

tune the amplitude and spatial scales of the pertur-

bations to improve probabilistic performance without a

deterioration in the error.
d Applying perturbations to different parameters within

the PBL scheme did not, in itself, result in sufficient

spread in near-surface variables with the exception

of 10-m wind speed, where it increased reliability and

sharpness.
d Perturbations from SKEB and SPPT were combined

with SPP-PBL to represent other sources of model

error. Ensembles using this combination of stochastic

schemes showed improved skill in 10-m wind verifica-

tion and all examined upper-level variables.

Our results generally confirm the findings of previous

studies performed using coarser grid spacings (e.g., Jankov

et al. 2017; Berner et al. 2011, 2015; Hacker et al. 2011a,b),

although convection is largely resolved in our simulations

and no longer dominated by convective parameterization

tendencies. The latter fact implies that the ensemble is

expected to represent uncertainty in convection and

cannot be mimicked by perturbing convective tenden-

cies. We found 1) perturbations of a limited number of

parameters within a single physics scheme did not gen-

erate sufficient spread to remedy underdispersion for

short-term ensemble forecasts, and 2) a combination

of several stochastic schemes outperformed any single

scheme for the dataset used in the present study.

It was generally expected that perturbations within

a single scheme (in this case, PBL) would not lead to

sufficient spread and—for short forecast lead times—

be limited to near-surface variables. However, SPP led

to frequently comparable, and in the case of the 10-m

wind, generally better reliabilities. This implies that

FIG. 13. RMSE and spread for eastern part of the domain for the

0000 UTC initialization for (a) 850-hPa temperature, (b) 500-hPa

geopotential height, and (c) 250-hPa wind speed. The 95% confi-

dence intervals are included.
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application of SPP leads toward an ensemble spread that

is more effective in encompassing sources of the pa-

rameterization uncertainties. The improvement in 10-m

wind speed reliability and sharpness represents a suc-

cessful implementation of PBL perturbations designed

to improve 10-m wind speed metrics. Therefore, an im-

provement in performance for targeted variables can be

made when using SPP.

Our research shows that at convective-permitting

resolution, a combination of several stochastic approaches

outperformed any one single stochastic method.While this

may suggest that a synthesis of different approachesmay be

best suited to capturemodel error in its full complexity, it is

hypothesized that applying the SPPapproach to a variety of

schemes will account for more realistic representation of

model error at the process level. In the future, SPP will be

added to the Thompson microphysics scheme, additional

parameters in the PBL and LSM schemes, and radiation

parameterization in order to more comprehensively rep-

resent model uncertainty at its source. The use of SPP

within many different physics schemes may be a valuable

option for adding sufficient spread within an operational,

convective-allowing, single-physics ensemble system.
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